2,700 research outputs found

    PieceTimer: A Holistic Timing Analysis Framework Considering Setup/Hold Time Interdependency Using A Piecewise Model

    Full text link
    In static timing analysis, clock-to-q delays of flip-flops are considered as constants. Setup times and hold times are characterized separately and also used as constants. The characterized delays, setup times and hold times, are ap- plied in timing analysis independently to verify the perfor- mance of circuits. In reality, however, clock-to-q delays of flip-flops depend on both setup and hold times. Instead of being constants, these delays change with respect to different setup/hold time combinations. Consequently, the simple ab- straction of setup/hold times and constant clock-to-q delays introduces inaccuracy in timing analysis. In this paper, we propose a holistic method to consider the relation between clock-to-q delays and setup/hold time combinations with a piecewise linear model. The result is more accurate than that of traditional timing analysis, and the incorporation of the interdependency between clock-to-q delays, setup times and hold times may also improve circuit performance.Comment: IEEE/ACM International Conference on Computer-Aided Design (ICCAD), November 201

    Sampling-based Buffer Insertion for Post-Silicon Yield Improvement under Process Variability

    Full text link
    At submicron manufacturing technology nodes process variations affect circuit performance significantly. This trend leads to a large timing margin and thus overdesign to maintain yield. To combat this pessimism, post-silicon clock tuning buffers can be inserted into circuits to balance timing budgets of critical paths with their neighbors. After manufacturing, these clock buffers can be configured for each chip individually so that chips with timing failures may be rescued to improve yield. In this paper, we propose a sampling-based method to determine the proper locations of these buffers. The goal of this buffer insertion is to reduce the number of buffers and their ranges, while still maintaining a good yield improvement. Experimental results demonstrate that our algorithm can achieve a significant yield improvement (up to 35%) with only a small number of buffers.Comment: Design, Automation and Test in Europe (DATE), 201

    Early Classification for Dynamic Inference of Neural Networks

    Full text link
    Deep neural networks (DNNs) have been successfully applied in various fields. In DNNs, a large number of multiply-accumulate (MAC) operations is required to be performed, posing critical challenges in applying them in resource-constrained platforms, e.g., edge devices. Dynamic neural networks have been introduced to allow a structural adaption, e.g., early-exit, according to different inputs to reduce the computational cost of DNNs. Existing early-exit techniques deploy classifiers at intermediate layers of DNNs to push them to make a classification decision as early as possible. However, the learned features at early layers might not be sufficient to exclude all the irrelevant classes and decide the correct class, leading to suboptimal results. To address this challenge, in this paper, we propose a class-based early-exit for dynamic inference. Instead of pushing DNNs to make a dynamic decision at intermediate layers, we take advantages of the learned features in these layers to exclude as many irrelevant classes as possible, so that later layers only have to determine the target class among the remaining classes. Until at a layer only one class remains, this class is the corresponding classification result. To realize this class-based exclusion, we assign each class with a classifier at intermediate layers and train the networks together with these classifiers. Afterwards, an exclusion strategy is developed to exclude irrelevant classes at early layers. Experimental results demonstrate the computational cost of DNNs in inference can be reduced significantly

    Associations of Muscle Mass and Strength with All-Cause Mortality among US Older Adults

    Get PDF
    INTRODUCTION: Recent studies suggested that muscle mass and muscle strength may independently or synergistically affect aging-related health outcomes in older adults; however, prospective data on mortality in the general population are sparse. METHODS: We aimed to prospectively examine individual and joint associations of low muscle mass and low muscle strength with all-cause mortality in a nationally representative sample. This study included 4449 participants age 50 yr and older from the National Health and Nutrition Examination Survey 1999 to 2002 with public use 2011 linked mortality files. Weighted multivariable logistic regression models were adjusted for age, sex, race, body mass index (BMI), smoking, alcohol use, education, leisure time physical activity, sedentary time, and comorbid diseases. RESULTS: Overall, the prevalence of low muscle mass was 23.1% defined by appendicular lean mass (ALM) and 17.0% defined by ALM/BMI, and the prevalence of low muscle strength was 19.4%. In the joint analyses, all-cause mortality was significantly higher among individuals with low muscle strength, whether they had low muscle mass (odds ratio [OR], 2.03; 95% confidence interval [CI], 1.27-3.24 for ALM; OR, 2.53; 95% CI, 1.64-3.88 for ALM/BMI) or not (OR, 2.66; 95% CI, 1.53-4.62 for ALM; OR, 2.17; 95% CI, 1.29-3.64 for ALM/BMI). In addition, the significant associations between low muscle strength and all-cause mortality persisted across different levels of metabolic syndrome, sedentary time, and LTPA. CONCLUSIONS: Low muscle strength was independently associated with elevated risk of all-cause mortality, regardless of muscle mass, metabolic syndrome, sedentary time, or LTPA among US older adults, indicating the importance of muscle strength in predicting aging-related health outcomes in older adults

    Logic Design of Neural Networks for High-Throughput and Low-Power Applications

    Full text link
    Neural networks (NNs) have been successfully deployed in various fields. In NNs, a large number of multiplyaccumulate (MAC) operations need to be performed. Most existing digital hardware platforms rely on parallel MAC units to accelerate these MAC operations. However, under a given area constraint, the number of MAC units in such platforms is limited, so MAC units have to be reused to perform MAC operations in a neural network. Accordingly, the throughput in generating classification results is not high, which prevents the application of traditional hardware platforms in extreme-throughput scenarios. Besides, the power consumption of such platforms is also high, mainly due to data movement. To overcome this challenge, in this paper, we propose to flatten and implement all the operations at neurons, e.g., MAC and ReLU, in a neural network with their corresponding logic circuits. To improve the throughput and reduce the power consumption of such logic designs, the weight values are embedded into the MAC units to simplify the logic, which can reduce the delay of the MAC units and the power consumption incurred by weight movement. The retiming technique is further used to improve the throughput of the logic circuits for neural networks. In addition, we propose a hardware-aware training method to reduce the area of logic designs of neural networks. Experimental results demonstrate that the proposed logic designs can achieve high throughput and low power consumption for several high-throughput applications.Comment: accepted by ASPDAC 202

    NUMERICAL INVESTIGATION OF GAS SAMPLING FROM FLUIDIZED BEDS

    Get PDF
    Gas mixing in a tall narrow fluidized bed operated in the slugging fluidization regime is studied with the aid of computational fluid dynamics. Three-dimensional numerical simulations are performed with an Eulerian-Eulerian model. Predicted axial and radial tracer concentration profiles for various operating conditions are generally in good agreement with experimental data from the literature. Different field variables including voidage, tracer concentration, and gas velocity at upstream and downstream levels are analysed to study gas mixing. Mean tracer concentrations in the dense phase and the bubble phase are evaluated and significant differences between them are found. The time-mean concentration is weighted heavily towards the dense phase concentration which may lead to misinterpretation of sampling data in dispersion models. Caution is needed when interpreting time-mean tracer concentration data. A flux-based mean tracer concentration is introduced to characterize the gas mixing in numerical simulations of two-phase fluidized beds

    Class-based Quantization for Neural Networks

    Full text link
    In deep neural networks (DNNs), there are a huge number of weights and multiply-and-accumulate (MAC) operations. Accordingly, it is challenging to apply DNNs on resource-constrained platforms, e.g., mobile phones. Quantization is a method to reduce the size and the computational complexity of DNNs. Existing quantization methods either require hardware overhead to achieve a non-uniform quantization or focus on model-wise and layer-wise uniform quantization, which are not as fine-grained as filter-wise quantization. In this paper, we propose a class-based quantization method to determine the minimum number of quantization bits for each filter or neuron in DNNs individually. In the proposed method, the importance score of each filter or neuron with respect to the number of classes in the dataset is first evaluated. The larger the score is, the more important the filter or neuron is and thus the larger the number of quantization bits should be. Afterwards, a search algorithm is adopted to exploit the different importance of filters and neurons to determine the number of quantization bits of each filter or neuron. Experimental results demonstrate that the proposed method can maintain the inference accuracy with low bit-width quantization. Given the same number of quantization bits, the proposed method can also achieve a better inference accuracy than the existing methods.Comment: accepted by DATE2023 (Design, Automation and Test in Europe

    CorrectNet: Robustness Enhancement of Analog In-Memory Computing for Neural Networks by Error Suppression and Compensation

    Full text link
    The last decade has witnessed the breakthrough of deep neural networks (DNNs) in many fields. With the increasing depth of DNNs, hundreds of millions of multiply-and-accumulate (MAC) operations need to be executed. To accelerate such operations efficiently, analog in-memory computing platforms based on emerging devices, e.g., resistive RAM (RRAM), have been introduced. These acceleration platforms rely on analog properties of the devices and thus suffer from process variations and noise. Consequently, weights in neural networks configured into these platforms can deviate from the expected values, which may lead to feature errors and a significant degradation of inference accuracy. To address this issue, in this paper, we propose a framework to enhance the robustness of neural networks under variations and noise. First, a modified Lipschitz constant regularization is proposed during neural network training to suppress the amplification of errors propagated through network layers. Afterwards, error compensation is introduced at necessary locations determined by reinforcement learning to rescue the feature maps with remaining errors. Experimental results demonstrate that inference accuracy of neural networks can be recovered from as low as 1.69% under variations and noise back to more than 95% of their original accuracy, while the training and hardware cost are negligible.Comment: Accepted by DATE 2023 (Design, Automation and Test in Europe

    Text mining and sentiment analysis of COVID-19 tweets

    Full text link
    The human severe acute respiratory syndrome coronavirus 2 (SARS-Cov-2), causing the COVID-19 disease, has continued to spread all over the world. It menacingly affects not only public health and global economics but also mental health and mood. While the impact of the COVID-19 pandemic has been widely studied, relatively fewer discussions about the sentimental reaction of the population have been available. In this article, we scrape COVID-19 related tweets on the microblogging platform, Twitter, and examine the tweets from Feb~24, 2020 to Oct~14, 2020 in four Canadian cities (Toronto, Montreal, Vancouver, and Calgary) and four U.S. cities (New York, Los Angeles, Chicago, and Seattle). Applying the Vader and NRC approaches, we evaluate the sentiment intensity scores and visualize the information over different periods of the pandemic. Sentiment scores for the tweets concerning three anti-epidemic measures, masks, vaccine, and lockdown, are computed for comparisons. The results of four Canadian cities are compared with four cities in the United States. We study the causal relationships between the infected cases, the tweet activities, and the sentiment scores of COVID-19 related tweets, by integrating the echo state network method with convergent cross-mapping. Our analysis shows that public sentiments regarding COVID-19 vary in different time periods and locations. In general, people have a positive mood about COVID-19 and masks, but negative in the topics of vaccine and lockdown. The causal inference shows that the sentiment influences people's activities on Twitter, which is also correlated to the daily number of infections.Comment: 20 pages, 10 figures, 1 tabl

    Expressivity Enhancement with Efficient Quadratic Neurons for Convolutional Neural Networks

    Full text link
    Convolutional neural networks (CNNs) have been successfully applied in a range of fields such as image classification and object segmentation. To improve their expressivity, various techniques, such as novel CNN architectures, have been explored. However, the performance gain from such techniques tends to diminish. To address this challenge, many researchers have shifted their focus to increasing the non-linearity of neurons, the fundamental building blocks of neural networks, to enhance the network expressivity. Nevertheless, most of these approaches incur a large number of parameters and thus formidable computation cost inevitably, impairing their efficiency to be deployed in practice. In this work, an efficient quadratic neuron structure is proposed to preserve the non-linearity with only negligible parameter and computation cost overhead. The proposed quadratic neuron can maximize the utilization of second-order computation information to improve the network performance. The experimental results have demonstrated that the proposed quadratic neuron can achieve a higher accuracy and a better computation efficiency in classification tasks compared with both linear neurons and non-linear neurons from previous works
    • …
    corecore